Music Emotion Classification based on Lyrics-Audio using Corpus based Emotion
Abstract
Music has lyrics and audio. That’s components can be a feature for music emotion classification. Lyric features were extracted from text data and audio features were extracted from audio signal data.In the classification of emotions, emotion corpus is required for lyrical feature extraction. Corpus Based Emotion (CBE) succeed to increase the value of F-Measure for emotion classification on text documents. The music document has an unstructured format compared with the article text document. So it requires good preprocessing and conversion process before classification process. We used MIREX Dataset for this research. Psycholinguistic and stylistic features were used as lyrics features. Psycholinguistic feature was a feature that related to the category of emotion. In this research, CBE used to support the extraction process of psycholinguistic feature. Stylistic features related with usage of unique words in the lyrics, e.g. ‘ooh’, ‘ah’, ‘yeah’, etc. Energy, temporal and spectrum features were extracted for audio features.The best test result for music emotion classification was the application of Random Forest methods for lyrics and audio features. The value of F-measure was 56.8%.
Keywords
audio features; CBE; corpus based emotion; emotion; lyric features; music classification
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i3.pp1720-1730
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).