HII: Histogram Inverted Index For Fast Images Retrieval

Yuda Munarko, Agus Eko Minarno

Abstract


This work aims to improve the speed of search by creating an indexing structure in CBIR system. We utilised an inverted index structure that usually used in text retrieval with a modification. The modified inverted index is built based on histogram data that generated using Multi Texton Histogram (MTH) and Multi Texton Co-Occurrence Descriptor (MTCD) from 10,000 images of Corel dataset. When building the inverted index, we normalised value of each feature into a real number and considered pairs of feature and value that owned by a particular number of images. Based on our investigation, on MTCD histogram of 5,000 data test, we found that by considering histogram variable values which owned by maximum 12% of images, the number of comparison for each query can be reduced by 67.47% in a rate, the precision is 82.2%, and the rate of access to disk is 32.83%. Furthermore, we named our approach as Histogram Inverted Index (HII). 


Keywords


Inverted Index Histogram Indexing CBIR

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v8i5.pp3140-3148

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).