A Study on Big Data Privacy Protection Models using Data Masking Methods
Abstract
In today’s predictive analytics world, data engineering play a vital role, data acquisition is carried out from various source systems and process as per the business applications and domain. Big Data integrates, governs, and secures big data with repeatable, reliable, and maintainable processes. Through volume, speed, and assortment of information characteristics try to reveal business esteem from enormous information. However, with information that is frequently deficient, conflicting, ungoverned, and unprotected, which is hazardous and enormous information being a risk instead of an advantage. What's more, with conventional methodologies that are manual and unpredictable, huge information ventures take too long to acknowledge business esteem. Reasonably and over and again conveying business esteem from enormous information requires another technique. In this connection, raw data has to be moved between onsite and offshore environment during this course of action, data privacy is a major concern and challenge. A Big Data Privacy platform can make it easier to detect, investigate, assess, and remediate threats from intruders. We tried to do complete study of Big Data Privacy using data masking methods on various data loads and different types. This work will help data quality analyst and big data developers while building the big data applications.
Keywords
big data privacy; business domains; data masking; dynamic data masking
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i5.pp3976-3983
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).