Dictionary based Image Compression via Sparse Representation

Arabinda Sahoo, Pranati Das


Nowadays image compression has become a necessity due to a large volume of images. For efficient use of storage space and data transmission, it becomes essential to compress the image. In this paper, we propose a dictionary based image compression framework via sparse representation, with the construction of a trained over-complete dictionary. The over-complete dictionary is trained using the intra-prediction residuals obtained from different images and is applied for sparse representation. In this method, the current image block is first predicted from its spatially neighboring blocks, and then the prediction residuals are encoded via sparse representation. Sparse approximation algorithm and the trained over-complete dictionary are applied for sparse representation of prediction residuals. The detail coefficients obtained from sparse representation are used for encoding. Experimental result shows that the proposed method yields both improved coding efficiency and image quality as compared to some state-of-the-art image compression methods.


dictionary learning, image compression, intra prediction, K-SVD, sparse representation,

Full Text:


DOI: http://doi.org/10.11591/ijece.v7i4.pp1964-1972

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).