Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Low-Resolution Face Recognition
Abstract
The objective of low-resolution face recognition is to identify faces from small size or poor quality images with varying pose, illumination, expression, etc. In this work, we propose a robust low face recognition technique based on one-dimensional Hidden Markov Models. Features of each facial image are extracted using three steps: firstly, both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. Secondly, the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. Finally, the reduced features are combined using Canonical Correlation Analysis (CCA) method. Unlike existing techniques using HMMs, in which authors consider each state to represent one facial region (eyes, nose, mouth, etc), the proposed system employs 1D-HMMs without any prior knowledge about the localization of interest regions in the facial image. Performance of the proposed method will be measured using the AR database.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i4.pp1915-1922
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).