A Study of SVC’s Impact Simulation and Analysis for Distance Protection Relay on Transmission Lines
Abstract
This paper focuses on analyzing and evaluating impact of a Static Var Compensator (SVC) on the measured impedance at distance protection relay location on power transmission lines. The measured impedance at the relay location when a fault occurs on the line is determined by using voltage and current signals from voltage and current transformers at the relay and the type of fault occurred on the line. The MHO characteristic is applied to analyze impact of SVC on the distance protection relay. Based on the theory, the authors in this paper develop a simulation program on Matlab/Simulink software to analyze impact of SVC on the distance protection relay. In the power system model, it is supposed that the SVC is located at mid-point of the transmission line to study impact of SVC on the distance relay. The simulation results show that SVC will impact on the measured impedance at the relay when the fault occurs after the location of the SVC on the power transmission line.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v7i4.pp1686-1695
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).