Towards an accurate Ground-Level Ozone Prediction
Abstract
This paper motivation is to find the most accurate technique to predict the ground level ozone at Al Jahra station, Kuwait. The data on the meteorological variables (air temperature, relative humidity, solar radiation, direction and speed of wind) and concentration of seven pollutants of environment (SO2, NO2, NO, CO2, CO, NMHC, and CH4) were applied to forecast the ozone concentration in atmosphere. In this report, three methods (PLS regression, support vector machine (SVM), and multiple least-square regression) were used to predict ground-level ozone. We used Fifteen parameters to evaluate the performance of methods. Multiple least-square regression, partial least square regression (PLS regression), and SVM using linear and radial kernels were the best performers with MAE (mean absolute error) of 9.17x 10-03, 9.72 x 10-03, 9.64 x 10-03, and 9.12 x 10-03, respectively. SVM with polynomial kernel had MAE of 5.46 x 10-02. These results show that these methods could be used to predict ground-level ozone concentrations at Al Jahra station in Kuwait.
Keywords
Ground level ozone concentration; multiple least squares regression; PLS regression; support vector machine; SVM polynomial
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v8i2.pp1131-1139
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).