Using Attribute Oriented Induction High Level Emerging Pattern (AOI-HEP) to Mine Frequent Patterns

Harco Leslie Hendric Spits Warnars

Abstract


Frequent patterns in Attribute Oriented Induction High level Emerging Pattern (AOI-HEP), are recognized when have maximum subsumption target (superset) into contrasting (subset) datasets (contrasting ⊂ target) and having large High Emerging Pattern (HEP) growth rate and support in target dataset. HEP Frequent patterns had been successful mined with AOI-HEP upon 4 UCI machine learning datasets such as adult, breast cancer, census and IPUMS with the number of instances of 48842, 569, 2458285 and 256932 respectively and each dataset has concept hierarchies built from its five chosen attributes. There are 2 and 1 finding frequent patterns from adult and breast cancer datasets, while there is no frequent pattern from census and IPUMS datasets. The finding HEP frequent patterns from adult dataset are adult which have government workclass with an intermediate education (80.53%) and America as native country(33%). Meanwhile, the only 1 HEP frequent pattern from breast cancer dataset is breast cancer which have clump thickness type of AboutAverClump with cell size of VeryLargeSize(3.56%). Finding HEP frequent patterns with AOI-HEP are influenced by learning on high level concept in one of chosen attribute and extended experiment upon adult dataset where learn on marital-status attribute showed that there is no finding frequent pattern.


Keywords


Data Mining; AOI-HEP; Attribute Oriented Induction; Emerging Pattern; High level Emerging Pattern; Frequent pattern; HEP Frequent pattern.

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i6.pp3037-3046

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).