Retinal Area Segmentation using Adaptive Superpixalation and its Classification using RBFN

Nimisha Singh, Rana Gill

Abstract


Retinal disease is the very important issue in medical field. To diagnose the disease, it needs to detect the true retinal area. Artefacts like eyelids and eyelashes are come along with retinal part so removal of artefacts is the big task for better diagnosis of disease into the retinal part.  In this paper, we have proposed the segmentation and use machine learning approaches to detect the true retinal part. Preprocessing is done on the original image using Gamma Normalization which helps to enhance the image  that can gives detail information about the image. Then the segmentation is performed on the Gamma Normalized image by Superpixel method. Superpixel is the group of pixel into different regions which is based on compactness and regional size. Superpixel is used to reduce the complexity of image processing task and provide suitable primitive image pattern. Then feature generation must be done and machine learning approach helps to extract true retinal area. The experimental evaluation gives the better result with accuracy of 96%.


Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v6i6.pp2674-2681

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).