A Novel Spectral Clustering based on Local Distribution

Jyotsna Kumar Mandal, Parthajit Roy

Abstract


This paper proposed a novel variation of spectral clustering model based on a novel affinitymetric that considers the distribution of the neighboring points to learn the underlayingstructures in the data set. Proposed affinity metric is calculated using Mahalanobis distancethat exploits the concept of outlier detection for identifying the neighborhoods of the datapoints. RandomWalk Laplacian of the representative graph and its spectra has been consideredfor the clustering purpose and the first k number of eigenvectors have been consideredin the second phase of clustering. The model has been tested with benchmark data and thequality of the output of the proposed model has been tested in various clustering indicesscales.

Keywords


Spectral Clustering, Affinity, Mahalanobis Distance, Outlier Detection, Random Walk, Laplacian Clustering, Indices

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v5i2.pp361-370

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).