Ranking in Distributed Uncertain Database Environments
Abstract
Distributed data processing is a major field in nowadays applications. Many applications collect and process data from distributed nodes to gain overall results. Large amount of data transfer and network delay made data processing in a centralized manner a hard operation representing an important problem. A very common way to solve this problem is ranking queries. Ranking or top-k queries concentrate only on the highest ranked tuples according to user's interest. Another issue in most nowadays applications is data uncertainty. Many techniques were introduced for modeling, managing, and processing uncertain databases. Although these techniques were efficient, they didn't deal with distributed data uncertainty. This paper deals with both data uncertainty and distribution based on ranking queries. A novel framework is proposed for ranking distributed uncertain data. The framework has a suite of novel algorithms for ranking data and monitoring updates. These algorithms help in reducing the communication rounds used and amount of data transmitted while achieving efficient and effective ranking. Experimental results show that the proposed framework has a great impact in reducing communication cost compared to other techniques.
Keywords
Full Text:
PDF
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).