GA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks
Abstract
Optimizing location of controllers in wireless networks is an important problem in the cellular mobile networks designing. In this paper, I present two algorithms based on Genetic Algorithm (GA) and Ant Colony Optimization (ACO) to solve it. In the first algorithm, my objective function is determined by the total distance based on finding maximum flow in a bipartite graph using Ford-Fulkerson algorithm. In the second algorithm, I generate pheromone matrix of ants and calculate the pheromone content of the path from controller i to base station j using the neighborhood includes only locations that have not been visited by ant k when it is at controller i. At each step of iterations, I choose good solutions satisfying capacity constraints and update step by step to find the best solution depending on my cost functions. I evaluate the performance of my algorithms to optimize location of controllers in wireless networks by comparing to SA, SA-Greedy, LB-Greedy algorithm. Numerical results show that my algorithms proposed have achieved much better more than other algorithms.
Keywords
Full Text:
PDF
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).