Evaluation of the dynamic performance and practical limitations of a two-wheeled self-balancing robot
Abstract
Two-wheeled self-balancing robots (TWSBR) are statically unstable. However, using closed-loop controllers can stabilize. In this work, the proportional-integral-derivative (PID) controller was designed to maintain the TWSBR stability by adding two zeros and a pole at the origin to the loop gain and by determining the parameter K via root-locus analysis. Then using the K value Kp, Ki, and Kd parameters were calculated. By applying an impulse response to the system, it was found that the system is able to reach a dynamic balance in less than 1.2 seconds with minimum steady-state error. The dynamic performance and limitations of the developed system were investigated. The highest disturbance angle that can be applied to the system while keeping the motor input voltage below 12 V, in order to create counterbalancing torque and achieve dynamic balance, is determined to be θ = 0.0524 rad. Additionally, it was found that the TWSBR system managed to retain stability in a significantly large range of sudden payload changes with the same PID controller.
Keywords
Modeling and simulation; Proportional-integral-derivative controller; Root-locus analysis; Self-balancing robot; Stability analysis
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i4.pp3613-3620
Copyright (c) 2025 Rupasinghe Arachchige Don Dhanushka Dharmasiri, Malagalage Kithsiri Jayananda
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES).