A novel convolutional neural network architecture for Alzheimer’s disease classification using magnetic resonance imaging data

Suhaila Abuowaida, Zaid Mustafa, Ahmad Aburomman, Nawaf Alshdaifat, Musab Iqtait

Abstract


Accurate categorization of Alzheimer’s disease is crucial for medical diagnosis and the development of therapeutic strategies. Deep learning models have shown significant potential in this endeavor; however, they often encounter difficulties due to the intricate and varied characteristics of Alzheimer’s disease. To address this difficulty, we suggest a new and innovative architecture for Alzheimer’s disease classification using magnetic resonance data. This design is named Res-BRNet and combines deep residual and boundary-based convolutional neural networks (CNNs). Res-BRNet utilizes a methodical fusion of boundary-focused procedures within adapted spatial and residual blocks. The spatial blocks retrieve information relating to uniformity, diversity, and boundaries of Alzheimer’s disease, although the residual blocks successfully capture texture differences at both local and global levels. We conducted a performance assessment of Res-BRNet. The Res-BRNet surpassed conventional CNN models, with outstanding levels of accuracy (99.22%). The findings indicate that Res-BRNet has promise as a tool for classifying Alzheimer’s disease, with the ability to enhance the precision and effectiveness of clinical diagnosis and treatment planning


Keywords


Alzheimer’s; Classification; Convolutional neural network; Deep learning; Health care

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i3.pp3519-3526

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES).