A prediction of coconut and coconut leaf disease using MobileNetV2 based classification

Kavitha Magadi Gopalakrishna, Raviprakash Madenur Lingaraju

Abstract


This research is aimed at effectively predicting coconut and coconut leaf disease using enhanced MobileNetV2 and ResNet50 methods. The stages involved in this implemented method are data collection, pre-processing, feature extraction, and classification. At first, data is collected from coconut and coconut leaf datasets. Gaussian filter and data augmentation techniques are applied on these images to eliminate noise during the pre-processing phase. Then, features are extracted using ResNet50 technique, while the diseases are classified using MobileNetV2 approach. In comparison to the existing methods namely, EfficientDet-D2, DL-assisted whitefly detection model (DL-WDM), and modified inception net-based hyper tuning support vector machine (MIN-SVM), the proposed method achieves superior classification values with 99.99% and 99.2% accuracy for coconut leaf and for coconuts, respectively.

Keywords


Coconut fruit; Coconut leaf; Disease prediction; MobileNetV2; ResNet50

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i3.pp2834-2844

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by theĀ Institute of Advanced Engineering and Science (IAES).