Tackling the anomaly detection challenge in large-scale wireless sensor networks
Abstract
One of the areas of ensuring the security of a wireless sensor network (WSN) is anomaly detection, which identifies deviations from normal behavior. In our paper, we investigate the optimal anomaly detection algorithms in a WSN. We highlight the problems in anomaly detection, and we also propose a new methodology using machine learning. The effectiveness of the k-nearest neighbor (kNN) and Z Score methods is evaluated on the data obtained from WSN devices in real time. According to the experimental study, the Z Score methodology showed a 98.9% level of accuracy, which was much superior to the kNN 43.7% method. In order to ensure accurate anomaly detection, it is crucial to have access to high-quality data when conducting a study. Our research enhances the field of WSN security by offering a novel approach for detecting anomalies. We compare the performance of two methods and provide evidence of the superior effectiveness of the Z Score method. Our future research will focus on exploring and comparing several approaches to identify the most effective anomaly detection method, with the ultimate goal of enhancing the security of WSN.
Keywords
Anomaly detection; k-Nearest Neighbor; Machine learning; Wireless sensor networks; Z Score
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i2.pp2479-2490
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).