A novel technique for selecting financial parameters and technical indicators to predict stock prices

Sneha S. bagalkot, Dinesha H. A., Nagaraj Naik

Abstract


Stock price predictions are crucial in financial markets due to their inherent volatility. Investors aim to forecast stock prices to maximize returns, but accurate predictions are challenging due to frequent price fluctuations. Most literature focuses on technical indicators, which rely on historical data. This study integrates both financial parameters and technical indicators to predict stock prices. It involves three main steps: identifying essential financial parameters using recursive feature elimination (RFE), selecting quality stocks with a decision tree (DT), and forecasting stock prices using artificial neural networks (ANN), deep neural networks (DNN), and extreme gradient boosting (XGBoost). The models’ performance is evaluated with root mean square error (RMSE) and mean absolute error (MAE) scores. ANN and DNN models showed superior performance compared to the XGBoost model. The experiments utilized Indian stock data.

Keywords


Artificial neural network; Deep neural network; Financial parameters; Recursive feature elimination; XGBoost

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i2.pp2192-2201

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).