An improved key scheduling for advanced encryption standard with expanded round constants and non-linear property of cubic polynomials

Muthu Meenakshi Ganesan, Sabeen Selvaraj

Abstract


The advanced encryption standard (AES) offers strong symmetric key encryption, ensuring data security in cloud computing environments during transmission and storage. However, its key scheduling algorithm is known to have flaws, including vulnerabilities to related-key attacks, inadequate nonlinearity, less complicated key expansion, and possible side-channel attack susceptibilities. This study aims to strengthen the independence among round keys generated by the key expansion process of AES—that is, the value of one round key does not reveal anything about the value of another round key—by improving the key scheduling process. Data sets of random, low, and high-density initial secret keys were used to evaluate the strength of the improved key scheduling algorithm through the National Institute of Standards and Technology (NIST) frequency test, the avalanche effect, and the Hamming distance between two consecutive round keys. A related-key analysis was performed to assess the robustness of the proposed key scheduling algorithm, revealing improved resistance to key-related cryptanalysis.

Keywords


Advanced encryption standard cloud computing; Cryptography; Cubic polynomials; Key schedule; National institute of standards and technology; Round constants

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i2.pp2455-2467

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).