Precipitation and water discharge for internet of things based flood disaster prediction improvement
Abstract
Floods are a major global problem affect communities and businesses. For these effects to be mitigated and emergency measures to be improved, accurate prediction is essential. Conventional flood prediction models frequently fail because the models ignore important hydrological elements like water discharge and instead solely use rainfall data. This limitation was addressed by the combination of rainfall and water discharge data on internet of things (IoT)-based technologies. It focuses on analyzing historical records from flood-prone areas in Semarang using gated recurrent unit (GRU) models. The findings demonstrate how effectively the GRU model performs when rainfall and water discharge factors are taken into account, resulting in very accurate and dependable predictions of flood events. Precision, Recall, and F1-score are evaluation metrics that demonstrate the accuracy on which the model determines flood emergency statuses. This study advances flood prediction methods and highlights the value of integrating internet of things data to improve preparedness and resilience against flood disasters.
Keywords
Flood prediction; Gated recurrent unit; Precipitation; Time series data; Water discharge
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i6.pp6773-6785
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).