Android-based smart digital marketplace application on agricultural commodities using a new variant recommendation system
Abstract
In the marketing of agricultural products, addressing the challenges associated with extensive distribution chains is essential, as these directly affect sellers. Additionally, the vast array of available product options often overwhelms customers, complicating their efforts to identify and purchase items that align with their preferences. This work aims to develop a smart e-commerce application for agribusiness, specifically designed for agricultural products on the Android platform. The application integrates a recommendation system that utilizes geolocation-aware neural graph collaborative filtering (GA-NGCF), which facilitates product marketing for farmers and streamlines the product search and selection process for users based on personalized preferences. The development process encompassed various stages, from planning to rigorous testing. The application’s recommendation system, which implements GA-NGCF, operates based on three primary elements: the creation of a geolocation graph of user-item data, the integration of information between neighboring nodes, and the prediction of user preferences. The resulting smart agribusiness e-commerce application, enhanced by GA-NGCF, demonstrated marked improvements in recommendation accuracy and overall application performance during testing. Empirical results indicated substantial enhancements in recommendation metrics, with GA-NGCF achieving a recall of 0.34, a precision of 0.36, and normalized discounted cumulative gain of 0.37, thereby outperforming existing models.
Keywords
Agricultural products; Android application; Geolocation; Personalized recommendation system; Smart digital market
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i2.pp1968-1977
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).