Deep learning for magnetic resonance imaging brain tumor detection: evaluating ResNet, EfficientNet, and VGG-19
Abstract
This paper investigates the application of convolutional neural networks (CNNs) for the early detection of brain tumors to enhance diagnostic accuracy. Brain tumors present a significant global health challenge, and early detection is vital for successful treatments and patient outcomes. The study includes a comprehensive literature review of recent advancements in brain tumor detection techniques. The main focus is on the development and evaluation of CNN models, including EfficientNetB3, residual networks-50 (ResNet50) and visual geometry group-19 (VGG-19), for binary image classification using magnetic resonance imaging (MRI) scans. These models demonstrate promising results in terms of accuracy, precision, and recall metrics. However, challenges related to overfitting and limited dataset size are acknowledged. The study highlights the potential of artificial intelligence (AI) in improving brain tumor detection and emphasizes the need for further research and validation in real-world clinical settings. EfficientNetB3 reached 99.44% training accuracy but showed potential overfitting with validation accuracy dropping to 89.47%. ResNet50 steadily improved to 83.62% training accuracy and 89.47% validation accuracy. VGG19 struggled, with only 62% accuracy.
Keywords
Brain tumor; Convolutional neural networks; EfficientNetB3; ResNet50; VGG-19
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i6.pp6360-6372
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).