Aspect-based sentiment-analysis using topic modelling and machine-learning

Radhika Jinendra Dhanal, Vijay Ram Ghorpade

Abstract


This study addresses the critical need for an accurate aspect-based sentiment-analysis (ABSA) model to understand sentiments effectively. The existing ABSA models often face challenges in accurately extracting aspects and determining sentiment polarity from textual data. Therefore, we propose a novel approach leveraging latent-Dirichlet-allocation (LDA) for aspect extraction and transformer-based bidirectional-encoder-representations from transformers (TF-BERT) for sentiment-polarity evaluation. The experiments were carried out on SemEval 2014 laptop and restaurant datasets. Also, a multi-domain dataset was generated by combining SemEval 2014, Amazon, and hospital reviews. The results demonstrate the superiority of the LDA-TF-BERT model, achieving 82.19% accuracy and 79.52% Macro-F1 score for the laptop task and 86.26% accuracy of 87.26% and 81.27% for Macro-F1 score for the restaurant task. This showcases the model's robustness and effectiveness in accurately analyzing textual data and extracting meaningful insights. The novelty of our work lies in combining LDA and TF-BERT, providing a comprehensive and accurate ABSA solution for various industries, thereby contributing significantly to the advancement of sentiment analysis techniques.

Keywords


BERT; Latent Dirichlet allocation; Machine learning; SemEval; Sentiment; TF-BERT

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i6.pp6689-6698

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).