Handwritten text recognition system using Raspberry Pi with OpenCV TensorFlow

Jamil Abedalrahim Jamil Alsayaydeh, Tommy Lee Chuin Jie, Rex Bacarra, Benny Ogunshola, Noorayisahbe Mohd Yaacob

Abstract


Handwritten text recognition (HTR) technology has brought about a revolution in the way handwritten data is converted and analyzed. This proposed work focuses on developing a HTR system using deep learning through advanced deep learning architecture and techniques. The aim is to create a model for real-time analysis and detection of handwritten texts. The proposed deep learning architecture that is convolutional neural networks (CNNs), is investigated and implemented with tools like OpenCV and TensorFlow. The model is trained on large handwritten datasets to enhance recognition accuracy. The system’s performance is evaluated based on accuracy, precision, real-time capabilities, and potential for deployment on platforms like Raspberry Pi. The actual outcome is a robust HTR system that can convert handwritten text to digital formats accurately. The developed system has achieved a high accuracy rate of 91.58% in recognizing English alphabets and digits and outperformed other models with 81.77% mAP, 78.85% precision, 79.32% recall, 79.46% F1-Score, and 82.4% receiver operating characteristic (ROC). This research contributes to the advancement of HTR technology by enhancing its precision and utility.

Keywords


Convolutional neural networks ; Deep learning; Handwritten text recognition; Real-time analysis; Recognition accuracy

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i2.pp2291-2303

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).