Optimal task partitioning to minimize failure in heterogeneous computational platform

Divyaprabha Kabbal Narayana, Sudarshan Tekal Subramanyam Babu

Abstract


The increased energy consumption by heterogeneous cloud platforms surges the carbon emissions and reduces system reliability, thus, making workload scheduling an extremely challenging process. The dynamic voltage- frequency scaling (DVFS) technique provides an efficient mechanism in improving the energy efficiency of cloud platform; however, employing DVFS reduces reliability and increases the failure rate of resource scheduling. Most of the current workload scheduling methods have failed to optimize the energy and reliability together under a central processing unit - graphical processing unit (CPU-GPU) heterogeneous computing platform; As a result, reducing energy consumption and task failure are prime issues this work aims to address. This work introduces task failure minimization (TFM) through optimal task partitioning (OTP) for workload scheduling in the CPU-GPU cloud computational platform. The TFM-OTP introduces a task partitioning model for the CPU-GPU pair; then, it provides a DVFS- based energy consumption model. Finally, the energy-load optimization problem is defined, and the optimal resource allocation design is presented. The experiment is conducted on two standard workloads namely SIPHT and CyberShake workload. The result shows that the proposed TFA-OTP model reduces energy consumption by 30.35%, reduces makespan by 70.78% and reduces task failure energy overhead by 83.7% in comparison with energy minimized scheduling (EMS) approach.

Keywords


Deadline; Energy; Heterogeneous computing; Parallel workflow application; Task failure; Workload scheduling

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v15i1.pp1079-1088

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).