Model of semiconductor converters for the simulation of an asymmetric loads in an autonomous power supply system
Abstract
This article is devoted to the development of computer model with semiconductor converters for the simulation of asymmetric loads allowing to solve the voltage symmetry problems under asymmetric loads (active and active-inductive) for isolated electric networks with renewable energy sources (mini hydroelectric power plants). A model of a symmetry device has been developed in the MATLAB/Simulink environment based on a proportional-integral controller and a relay controller - P. The effectiveness of their use depends on the load's nature. The implementation of a voltage converter is presented considering a three-phase inverter with discrete key switching at 120, 150, and 180 degrees with a purely active load. Based on the harmonic analysis of the three-phase voltage at discrete conversion, the value of the first harmonic is determined. Voltage transformations under active-inductive load at 120, 150, and 180 degrees are mathematically described. To determine the harmonic spectrum, an analysis of the fast Fourier transform for the three-phase voltage of a MATLAB/Simulink semiconductor converter was carried out. It is established that the alternating current output voltage is generated on the output side of the inverter of a three-phase voltage source through a three-phase load connected by a star with a harmonic suppression method.
Keywords
Asymmetry; Load; Model; Semiconductor converter; Voltage
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v15i2.pp1332-1347
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).