Advancing cryptographic security: a novel hybrid AES-RSA model with byte-level tokenization

Renuka Shone Durge, Vaishali M. Deshmukh


As cyberattacks are getting more complex and sophisticated, stringent, multi-layered security measures are required. Existing approaches often rely on tokenization or encryption algorithms, both of which have drawbacks. Previous attempts to ensure data security have primarily focused on tokenization techniques or complex encryption algorithms. While these methods work well on their own, they have proven vulnerable to sophisticated cyberattacks. This research presents new ways to improve data security in digital storage and communication systems. We solve data security issues by proposing a multi-level encryption strategy that combines double encryption technology along with tokenization. The first step in the procedure is a byte-level byte-pair encoding (BPE) tokenizer, which tokenizes the input data and adds a layer of protection to make it unreadable. After tokenization, data is encrypted using Rivest–Shamir–Adleman (RSA) to create a strong initial level of security. To further enhance security, data encrypted with RSA has an additional layer of encryption applied using the advanced encryption standard (AES) method. This article describes how this approach is implemented in practice and shows how it is effective in protecting data at a higher level than single-layer encryption or tokenization systems.


AES algorithm; Byte level tokenizer; Encryption algorithms; RSA algorithm; Tokenization

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).