Neural network optimizer of proportional-integral-differential controller parameters

Isamiddin Siddikov, Gulruxsor Nashvandova, Gulchekhra Alimova


Wide application of proportional-integral-differential (PID)-regulator in industry requires constant improvement of methods of its parameters adjustment. The paper deals with the issues of optimization of PID-regulator parameters with the use of neural network technology methods. A methodology for choosing the architecture (structure) of neural network optimizer is proposed, which consists in determining the number of layers, the number of neurons in each layer, as well as the form and type of activation function. Algorithms of neural network training based on the application of the method of minimizing the mismatch between the regulated value and the target value are developed. The method of back propagation of gradients is proposed to select the optimal training rate of neurons of the neural network. The neural network optimizer, which is a superstructure of the linear PID controller, allows increasing the regulation accuracy from 0.23 to 0.09, thus reducing the power consumption from 65% to 53%. The results of the conducted experiments allow us to conclude that the created neural superstructure may well become a prototype of an automatic voltage regulator (AVR)-type industrial controller for tuning the parameters of the PID controller.


Activation function; Control system; Learning; Neural network; Optimization; Regulator

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).