Feature selection using non-parametric correlations and important features on recursive feature elimination for stock price prediction
Abstract
Stock price prediction using machine learning is a rapidly growing area of research. However, the large number of features that can be used can complicate the learning process. The feature selection method that can be used to overcome this problem is recursive feature elimination. Standard recursive feature elimination carries the risk of producing inaccurate algorithms because the top-ranked features are not necessarily the most important features. This research proposes a feature selection method that combines important features and nonparametric correlation in recursive feature elimination for stock price prediction. The data features used are technical indicators and stock price history. The recursive feature elimination method is modified with important features and nonparametric correlation features. The strategy for combining important features and non-parametric features is average weight, 25:75% weight, 75:25% weight, maximum weight, and minimum weight. The performance evaluation results show that the proposed feature selection method succeeded in obtaining small error values. The proposed method for predicting PT Bank Rakyat Indonesia Tbk (BBRI) stock prices obtains mean squared error, root mean square error, mean absolute error, and mean absolute percentage error evaluation values of 0.0000336, 0.00577, 0.00459, and 1.78%, respectively. This shows that recursive feature elimination with feature selection that combines important features and non-parametric correlation works better than the original recursive feature elimination at predicting stock prices.
Keywords
Feature selection; Important features; Non-parametric correlations; Recursive feature elimination; Stock price prediction
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v14i2.pp1906-1915
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).