Smart monitoring technique for solar cell systems using internet of things based on NodeMCU ESP8266 microcontroller

Ahmed H. Ali, Raafat A. El-Kammar, Hesham F. Ali Hamed, Adel A. Elbaset, Aya Hossam


Rapidly and remotely monitoring and receiving the solar cell systems status parameters, solar irradiance, temperature, and humidity, are critical issues in enhancement their efficiency. Hence, in the present article an improved smart prototype of internet of things (IoT) technique based on embedded system through NodeMCU ESP8266 (ESP-12E) was carried out experimentally. Three different regions at Egypt; Luxor, Cairo, and El-Beheira cities were chosen to study their solar irradiance profile, temperature, and humidity by the proposed IoT system. The monitoring data of solar irradiance, temperature, and humidity were live visualized directly by Ubidots through hypertext transfer protocol (HTTP) protocol. The measured solar power radiation in Luxor, Cairo, and El-Beheira ranged between 216-1000, 245-958, and 187-692 W/m2 respectively during the solar day. The accuracy and rapidity of obtaining monitoring results using the proposed IoT system made it a strong candidate for application in monitoring solar cell systems. On the other hand, the obtained solar power radiation results of the three considered regions strongly candidate Luxor and Cairo as suitable places to build up a solar cells system station rather than El-Beheira.


Internet of things; NodeMCU ESP8266 (ESP-12E); Smart operating system; Solar cell systems; Solar profile

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).