Collusion-resistant multiparty data sharing in social networks

Nisha P. Shetty, Balachandra Muniyal, Nandini Proothi, Bhavya Gopal


The number of users on online social networks (OSNs) has grown tremendously over the past few years, with sites like Facebook amassing over a billion users. With the popularity of OSNs, the increase in privacy risk from the large volume of sensitive and private data is inevitable. While there are many features for access control for an individual user, most OSNs still need concrete mechanisms to preserve the privacy of data shared between multiple users. The proposed method uses metrics such as identity leakage (IL) and strength of interaction (SoI) to fine-tune the scenarios that use privacy risk and sharing loss to identify and resolve conflicts. In addition to conflict resolution, bot detection is also done to mitigate collusion attacks. The final decision to share the data item is then ascertained based on whether it passes the threshold condition for the above metrics.


Social network computing; Multi-party access control; Security model; Policy specification and management; Collusion attacks; Identity leakage; Strength of interaction

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).