Human movement detection and classification capabilities using passive Wi-Fi based radar

Hidayatusherlina Razali, Nur Emileen Abd Rashid, Muhammad Nazrin Farhan Nasarudin, Nor Najwa Ismail, Zuhani Ismail Khan, Siti Amalina Enche Ab Rahim, Megat Syahirul Amin Megat Ali, Nor Ayu Zalina Zakaria

Abstract


Human detection and classification via Wi-Fi transmission have received a lot of attention in recent years as crucial facilitators in security and human-computer interaction (HCI). The passive Wi-Fi radar (PWR) system used by previous researchers applied cross-ambiguity function (CAF) and CLEAN algorithms to process the detected signals. This paper explores the feasibility and viability of a PWR system in detecting and classifying human movements without utilizing CAF and CLEAN algorithms. The movements are performed by four participants but with comparable body sizes and heights. Three daily human movements are investigated namely walking, bending, and sitting, with each participant performing each movement 24 times, providing a total of 96 samples per activity. The system is evaluated based on the consistency of the signal pattern in a frequency domain and the percentage accuracy is assessed using an artificial neural network (ANN) classifier and trained using a leave-one-out cross-validation (LOOCV) method. The frequency domain results reveal that the signals are consistent, with no noticeable variations or changes in the voltage intensity or shape of the main lobe. The classification of the movements shows that the classifier has an overall accuracy of 97.6%.

Keywords


Classification; Detection; Human movement; Leave-one-out cross-validation; Wi-Fi

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i3.pp3545-3556

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).