Enhancing of single-stage grid-connected photovoltaic system using fuzzy logic controller

Mahmoud Haseeb, Ali Hassan Ibrahim Mansour, El-Said A. Othman


The power generated by photovoltaic (PV) systems is influenced by environmental factors. This variability hampers the control and utilization of solar cells' peak output. In this study, a single-stage grid-connected PV system is designed to enhance power quality. Our approach employs fuzzy logic in the direct power control (DPC) of a three-phase voltage source inverter (VSI), enabling seamless integration of the PV connected to the grid. Additionally, a fuzzy logic-based maximum power point tracking (MPPT) controller is adopted, which outperforms traditional methods like incremental conductance (INC) in enhancing solar cell efficiency and minimizing the response time. Moreover, the inverter's real-time active and reactive power is directly managed to achieve a unity power factor (UPF). The system's performance is assessed through MATLAB/Simulink implementation, showing marked improvement over conventional methods, particularly in steady-state and varying weather conditions. For solar irradiances of 500 and 1,000 W/m2, the results show that the proposed method reduces the total harmonic distortion (THD) of the injected current to the grid by approximately 46% and 38% compared to conventional methods, respectively. Furthermore, we compare the simulation results with IEEE standards to evaluate the system's grid compatibility.


Direct power control; Fuzzy logic controller; Grid-connected photovoltaic system; Maximum power point; Total harmonic distortion

Full Text:


DOI: http://doi.org/10.11591/ijece.v14i3.pp2400-2412

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).