Enhanced transformer long short-term memory framework for datastream prediction

Nada Adel Dief, Mofreh Mohamed Salem, Asmaa Hamdy Rabie, Ali Ibrahim El-Desouky


In machine learning, datastream prediction is a challenging issue, particularly when dealing with enormous amounts of continuous data. The dynamic nature of data makes it difficult for traditional models to handle and sustain real-time prediction accuracy. This research uses a multi-processor long short-term memory (MPLSTM) architecture to present a unique framework for datastream regression. By employing several central processing units (CPUs) to divide the datastream into multiple parallel chunks, the MPLSTM framework illustrates the intrinsic parallelism of long short-term memory (LSTM) networks. The MPLSTM framework ensures accurate predictions by skillfully learning and adapting to changing data distributions. Extensive experimental assessments on real-world datasets have demonstrated the clear superiority of the MPLSTM architecture over previous methods. This study uses the transformer, the most recent deep learning breakthrough technology, to demonstrate how well it can handle challenging tasks and emphasizes its critical role as a cutting-edge approach to raising the bar for machine learning.


Datastream; Long short-term memory; Machine learning; Multiprocessing pool; Parallel processing; Prediction accuracy; Transformer;

Full Text:


DOI: http://doi.org/10.11591/ijece.v14i1.pp830-840

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).