The performance of artificial intelligence in prostate magnetic resonance imaging screening

Hamza Abu Owida, Mohammad R. Hassan, Ali Mohd Ali, Feras Alnaimat, Ashraf Al Sharah, Suhaila Abuowaida, Nawaf Alshdaifat


Prostate cancer is the predominant form of cancer observed in men worldwide. The application of magnetic resonance imaging (MRI) as a guidance tool for conducting biopsies has been established as a reliable and well-established approach in the diagnosis of prostate cancer. The diagnostic performance of MRI-guided prostate cancer diagnosis exhibits significant heterogeneity due to the intricate and multi-step nature of the diagnostic pathway. The development of artificial intelligence (AI) models, specifically through the utilization of machine learning techniques such as deep learning, is assuming an increasingly significant role in the field of radiology. In the realm of prostate MRI, a considerable body of literature has been dedicated to the development of various AI algorithms. These algorithms have been specifically designed for tasks such as prostate segmentation, lesion identification, and classification. The overarching objective of these endeavors is to enhance diagnostic performance and foster greater agreement among different observers within MRI scans for the prostate. This review article aims to provide a concise overview of the application of AI in the field of radiology, with a specific focus on its utilization in prostate MRI.


Artificial intelligence; Convolutional neural networks; Magnetic resonance imaging; Prostate cancer; Segmentation

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).