Insights of machine learning-based threat identification schemes in advanced network system

Thanuja Narasimhamurthy, Gunavathi Hosahalli Swamy

Abstract


An advanced network system (ANS) is characterized by extensive communication features that can support a sophisticated collaborative network structure. This is essential to hosting various forms of upcoming modernized and innovative applications. Security is one of the rising concerns associated with ANS deployment. It is also noted that machine learning is one of the preferred cost-effective ways to optimize the security strength and address various ongoing security problems in ANS; however, it is still unknown about its overall effectivity scale. Hence, this paper contributes to a systematic review of existing variants of machine learning approaches to deal with threat identification in ANS. As ANS is a generalized form, this discussion considers the impact of existing machine learning approaches on its practical use cases. The paper also contributes towards critical gap analysis and highlights the study's potential learning outcome.

Keywords


Advanced network system; Collaborative; Machine learning; Security; Threat identification

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i4.pp4664-4674

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).