A simplified classification computational model of opinion mining using deep learning

Rajeshwari Dembala, Ananthapadmanabha Thammaiah


Opinion and attempts to develop an automated system to determine people's viewpoints towards various units such as events, topics, products, services, organizations, individuals, and issues. Opinion analysis from the natural text can be regarded as a text and sequence classification problem which poses high feature space due to the involvement of dynamic information that needs to be addressed precisely. This paper introduces effective modelling of human opinion analysis from social media data subjected to complex and dynamic content. Firstly, a customized preprocessing operation based on natural language processing mechanisms as an effective data treatment process towards building quality-aware input data. On the other hand, a suitable deep learning technique, bidirectional long short term-memory (Bi-LSTM), is implemented for the opinion classification, followed by a data modelling process where truncating and padding is performed manually to achieve better data generalization in the training phase. The design and development of the model are carried on the MATLAB tool. The performance analysis has shown that the proposed system offers a significant advantage in terms of classification accuracy and less training time due to a reduction in the feature space by the data treatment operation.


Bidirectional long short-term memory; Natural language processing; Natural text data; Opinion classification; Preprocessing

Full Text:


DOI: http://doi.org/10.11591/ijece.v14i2.pp2043-2054

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).