Accurate metaheuristic deep convolutional structure for a robust human gait recognition
Abstract
Gait recognition has become a developing technology in various security, industrial, medical, and military applications. This paper proposed a deep convolutional neural network (CNN) model to authenticate humans via their walking style. The proposed model has been applied to two commonly used standardized datasets, Chinese Academy of Sciences (CASIA) and Osaka University-Institute of Scientific and Industrial Research (OU-ISIR). After the silhouette images have been isolated from the gait image datasets, their features have been extracted using the proposed deep CNN and the traditional ones, including AlexNet, Inception (GoogleNet), VGGNet, ResNet50, and Xception. The best features were selected using genetic, grey wolf optimizer (GWO), particle swarm optimizer (PSO), and chi-square algorithms. Finally, recognize the selected features using the proposed deep neural network (DNN). Several performance evaluation parameters have been estimated to evaluate the model’s quality, including accuracy, specificity, sensitivity, false negative rate (FNR), and training time. Experiments have demonstrated that the suggested framework with a genetic feature selector outperforms previous selectors and recent research, scoring accuracy values of 99.46% and 99.09% for evaluating the CASIA and OU-ISIR datasets, respectively, in low time (19 seconds for training).
Keywords
CASIA gait dataset; convolutional neural network; gait recognition; genetic algorithm; OU-ISIR
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp7005-7015
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).