Emoji’s sentiment score estimation using convolutional neural network with multi-scale emoji images

Theerawee Kulkongkoon, Nagul Cooharojananone, Rajalida Lipikorn


Emojis are any small images, symbols, or icons that are used in social media. Several well-known emojis have been ranked and sentiment scores have been assigned to them. These ranked emojis can be used for sentiment analysis; however, many new released emojis have not been ranked and have no sentiment score yet. This paper proposes a new method to estimate the sentiment score of any unranked emotion emoji from its image by classifying it into the class of the most similar ranked emoji and then estimating the sentiment score using the score of the most similar emoji. The accuracy of sentiment score estimation is improved by using multi-scale images. The ranked emoji image data set consisted of 613 classes with 161 emoji images from three different platforms in each class. The images were cropped to produce multi-scale images. The classification and estimation were performed by using convolutional neural network (CNN) with multi-scale emoji images and the proposed voting algorithm called the majority voting with probability (MVP). The proposed method was evaluated on two datasets: ranked emoji images and unranked emoji images. The accuracies of sentiment score estimation for the ranked and unranked emoji test images are 98% and 51%, respectively.


Convolutional neural network; Emoji classification; Majority voting with probability; Multi-scale images; Sentiment analysis;

Full Text:


DOI: http://doi.org/10.11591/ijece.v14i1.pp698-710

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).