Modified fuzzy rough set technique with stacked autoencoder model for magnetic resonance imaging based breast cancer detection

Sachin Kumar Mamdy, Vishwanath Petli


Breast cancer is the common cancer in women, where early detection reduces the mortality rate. The magnetic resonance imaging (MRI) images are efficient in analyzing breast cancer, but it is hard to identify the abnormalities. The manual breast cancer detection in MRI images is inefficient; therefore, a deep learning-based system is implemented in this manuscript. Initially, the visual quality improvement is done using region growing and adaptive histogram equalization (AHE), and then, the breast lesion is segmented by Otsu thresholding with morphological transform. Next, the features are extracted from the segmented lesion, and a modified fuzzy rough set technique is proposed to reduce the dimensions of the extracted features that decreases the system complexity and computational time. The active features are fed to the stacked autoencoder for classifying the benign and malignant classes. The results demonstrated that the proposed model attained 99% and 99.22% of classification accuracy on the benchmark datasets, which are higher related to the comparative classifiers: decision tree, naïve Bayes, random forest and k-nearest neighbor (KNN). The obtained results state that the proposed model superiorly screens and detects the breast lesions that assists clinicians in effective therapeutic intervention and timely treatment.


Breast cancer detection; Fuzzy rough set; Image enhancement; Magnetic resonance imaging; Otsu thresholding; Stacked autoencoder

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).