Transformations for non-destructive evaluation of brix in mango by reflectance spectroscopy and machine learning

Ernesto Paiva-Peredo, Diego Gonzales-Rodriguez, William Trujillo Herrera, Juan Jesús Soria Quijaite, Diana Quispe-Arpasi, Christian Ovalle Paulino


Mango is a very popular climacteric fruit in America and Europe. Among the internal properties of the mango, total soluble solids (TSS) are an adequate indicator to estimate the quality of mango, however, the measurement of this indicator requires destructive tests. Several research have addressed similar issues; they have made use of pre-processing transformations without making it clear which of them is statistically better. Here, we created a new spectral database to build machine learning (ML) models. We analyzed a total of 18 principal component regression (PCR) models and 18 partial least squared regression (PLSR) models, where 4 types of transformations, 3 different feature extractors, and 3 different pre-processing techniques are combined. The research proposes a double cross validation (CV) both to determine the optimal number of components and to obtain the final metrics. The best model had a root mean square error (RMSE) of 1.1382 °Brix and a RMSE on the transformed scale of 0.5140. The best model used 4 components, used y2 transformation, reflectance R as the independent variable and MSC as a pre-processing technique.


Brix; Machine learning; Partial least squares; Principal component analysis; Spectroscopy;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).