A novel improved elephant herding optimization for path planning of a mobile robot

Ahmed Oultiligh, Hassan Ayad, Abdeljalil El Kari, Mostafa Mjahed, Nada El Gmili

Abstract


Swarm intelligence algorithms have been in recent years one of the most used tools for planning the trajectory of a mobile robot. Researchers are applying those algorithms to find the optimal path, which reduces the time required to perform a task by the mobile robot. In this paper, we propose a new method based on the grey wolf optimizer algorithm (GWO) and the improved elephant herding optimization algorithm (IEHO) for planning the optimal trajectory of a mobile robot. The proposed solution consists of developing an IEHO algorithm by improving the basic EHO algorithm and then hybridizing it with the GWO algorithm to take advantage of the exploration and exploitation capabilities of both algorithms. The comparison of the IEHO-GWO hybrid proposed in this work with the GWO, EHO, and cuckoo-search (CS) algorithms via simulation shows its effectiveness in finding an optimal trajectory by avoiding obstacles around the mobile robot.

Keywords


Cuckoo search; Elephant herding optimization; Grey wolf optimizer; Improved elephant herding; Mobile robot; Optimization; Path planning

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i1.pp206-217

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).