An overlapping conscious relief-based feature subset selection method

Nishat Tasnim Mim, Md. Eusha Kadir, Suravi Akhter, Muhammad Asif Hossain Khan


Feature selection is considered as a fundamental prepossessing step in various data mining and machine learning based works. The quality of features is essential to achieve good classification performance and to have better data analysis experience. Among several feature selection methods, distance-based methods are gaining popularity because of their eligibility in capturing feature interdependency and relevancy with the endpoints. However, most of the distance-based methods only rank the features and ignore the class overlapping issues. Features with class overlapping data work as an obstacle during classification. Therefore, the objective of this research work is to propose a method named overlapping conscious MultiSURF (OMsurf) to handle data overlapping and select a subset of informative features discarding the noisy ones. Experimental results over 20 benchmark dataset demonstrates the superiority of OMsurf over six existing state-of-the-art methods


Class overlapping; Distance-based method; Feature selection; Relief-based method; Reward-penalty

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).