Detecting anomalies in security cameras with 3D-convolutional neural network and convolutional long short-term memory

Esraa A. Mahareek, Eman K. ElSayed, Nahed M. ElDesouky, Kamal A. ElDahshan

Abstract


This paper presents a novel deep learning-based approach for anomaly detection in surveillance films. A deep network that has been trained to recognize objects and human activity in movies forms the foundation of the suggested approach. In order to detect anomalies in surveillance films, the proposed method combines the strengths of 3D-convolutional neural network (3DCNN) and convolutional long short-term memory (ConvLSTM). From the video frames, the 3DCNN is utilized to extract spatiotemporal features,while ConvLSTM is employed to record temporal relationships between frames. The technique was evaluated on five large-scale datasets from the actual world (UCFCrime, XDViolence, UBIFights, CCTVFights, UCF101) that had both indoor and outdoor video clips as well as synthetic datasets with a range of object shapes, sizes, and behaviors. The results further demonstrate that combining 3DCNN with ConvLSTM can increase precision and reduce false positives, achieving a high accuracy and area under the receiver operating characteristic-area under the curve (ROC-AUC) in both indoor and outdoor scenarios when compared to cuttingedge techniques mentioned in the comparison.


Keywords


3D-convolutional-neural-network; Anomaly detection; Bidirectional convolutional long short-term memory; Fight detection; Surveillance videos; Violence detection;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i1.pp993-1004

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).