Bio-inspired algorithm for decisioning wireless access point installation

Aphirak Thitinaruemit, Suchada Sitjongsataporn, Sethakarn Prongnuch


This paper presents the bio-inspired algorithms for decisioning wireless access point (AP) installation. In order to achieve the desired coverage capability of APs, the bio-inspired algorithms are applied for robust competition and optimization. The main objective is to determine the optimal number of APs with the high coverage capability in the concerning area using the genetic and ant colony optimization algorithms. Received signal strength indicator (RSSI) and line-of-sight (LoS) gradient approach are the most important parameters for AP installation depending on the AP signal strength. Practical experiments are tested on the embedded system using Xilinx Kria KR260 and Raspberry Pi Zero 2W boards at the tested room size about 16 m wide and 40 m long inside the building. Xilinx Kria KR260 board is used to calculate the number of AP installation and localization compared to Xcode. Then, Raspberry Pi Zero 2W board is the representation of wireless AP for measuring the signal in the testing area. Experiment results show that maximum received signals strength is equal to -35 dBm at 6 m and there are six APs installation with high coverage area and maximum received signal strength at the area of 16×40 m2.


ant colony optimization; genetic algorithm; localization algorithm; wireless access point; wireless network design;

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).