An efficient security framework for intrusion detection and prevention in internet-of-things using machine learning technique

Tejashwini Nagaraj, Rajani Kallhalli Channarayappa

Abstract


Over the past few years, the internet of things (IoT) has advanced to connect billions of smart devices to improve quality of life. However, anomalies or malicious intrusions pose several security loopholes, leading to performance degradation and threat to data security in IoT operations. Thereby, IoT security systems must keep an eye on and restrict unwanted events from occurring in the IoT network. Recently, various technical solutions based on machine learning (ML) models have been derived towards identifying and restricting unwanted events in IoT. However, most ML-based approaches are prone to miss-classification due to inappropriate feature selection. Additionally, most ML approaches applied to intrusion detection and prevention consider supervised learning, which requires a large amount of labeled data to be trained. Consequently, such complex datasets are impossible to source in a large network like IoT. To address this problem, this proposed study introduces an efficient learning mechanism to strengthen the IoT security aspects. The proposed algorithm incorporates supervised and unsupervised approaches to improve the learning models for intrusion detection and mitigation. Compared with the related works, the experimental outcome shows that the model performs well in a benchmark dataset. It accomplishes an improved detection accuracy of approximately 99.21%.

Keywords


Clustering techniques; Internet of things; Intrusion detection; Network security; Supervised learning

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i2.pp2313-2321

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).