Prediction of the risk of developing heart disease using logistic regression

Ayodeji Olalekan Salau, Tsehay Admassu Assegie, Elisha Didam Markus, Joy Nnenna Eneh, ThankGod Izuchukwu Ozue


Heart disease (HD) accounts for more deaths every year than other illnesses. World Health Organization (WHO) assessed 17.9 million life losses caused by heart disease in 2016, demonstrating 31% of all international life losses. Three-quarters of these life losses occur in low and middle-income nations. Machine learning (ML), due to advanced precision in pattern recognition and classification, demonstrates to be in effect in complementing decision-making and threat prediction from the huge number of HD data created by the healthcare sector. Thus, this study aims to develop a logistic regression model (LRM) for predicting the risk of getting HD in ten years. The study explores the different methodologies for improving the performance of base LRM for predicting whether a person gets HD after ten years or not. The result demonstrates the capability of LRM in predicting the risks of getting HD after ten years. The LRM achieves 97.35% accuracy with the recursive feature elimination and random under-sampling. This implies that the LRM can play an important role in precautionary methods to avoid the risk of HD.


Automated decision making; Cardio vascular disease; Data analytics; Heart disease risk; Predictive analytics

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).