Analysis of driving style using self-organizing maps to analyze driver behavior

Yulia Shichkina, Roza Fatkieva, Maxim Kopylov


Modern life is strongly associated with the use of cars, but the increase in acceleration speeds and their maneuverability leads to a dangerous driving style for some drivers. In these conditions, the development of a method that allows you to track the behavior of the driver is relevant. The article provides an overview of existing methods and models for assessing the functioning of motor vehicles and driver behavior. Based on this, a combined algorithm for recognizing driving style is proposed. To do this, a set of input data was formed, including 20 descriptive features: About the environment, the driver's behavior and the characteristics of the functioning of the car, collected using OBD II. The generated data set is sent to the Kohonen network, where clustering is performed according to driving style and degree of danger. Getting the driving characteristics into a particular cluster allows you to switch to the private indicators of an individual driver and considering individual driving characteristics. The application of the method allows you to identify potentially dangerous driving styles that can prevent accidents.


Dangerous driving; Driving style; Kohonen self-organizing maps; Obd II; Vehicle control

Full Text:



Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).