Visualization of hyperspectral images on parallel and distributed platform: Apache Spark
Abstract
The field of hyperspectral image storage and processing has undergone a remarkable evolution in recent years. The visualization of these images represents a challenge as the number of bands exceeds three bands, since direct visualization using the trivial system red, green and blue (RGB) or hue, saturation and lightness (HSL) is not feasible. One potential solution to resolve this problem is the reduction of the dimensionality of the image to three dimensions and thereafter assigning each dimension to a color. Conventional tools and algorithms have become incapable of producing results within a reasonable time. In this paper, we present a new distributed method of visualization of hyperspectral image based on the principal component analysis (PCA) and implemented in a distributed parallel environment (Apache Spark). The visualization of the big hyperspectral images with the proposed method is made in a smaller time and with the same performance as the classical method of visualization.
Keywords
Dimension reduction; hyperspectral; MapReduce; principal component analysis; spark platform; visualization
Full Text:
PDFDOI: http://doi.org/10.11591/ijece.v13i6.pp7115-7124
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).