Convolutional auto-encoded extreme learning machine for incremental learning of heterogeneous images

Sathya Madhusudhanan, Suresh Jaganathan, Dattuluri Venkatavara Prasad

Abstract


In real-world scenarios, a system's continual updating of learning knowledge becomes more critical as the data grows faster, producing vast volumes of data. Moreover, the learning process becomes complex when the data features become varied due to the addition or deletion of classes. In such cases, the generated model should learn effectively. Incremental learning refers to the learning of data which constantly arrives over time. This learning requires continuous model adaptation but with limited memory resources without sacrificing model accuracy. In this paper, we proposed a straightforward knowledge transfer algorithm (convolutional auto-encoded extreme learning machine (CAE-ELM)) implemented through the incremental learning methodology for the task of supervised classification using an extreme learning machine (ELM). Incremental learning is achieved by creating an individual train model for each set of homogeneous data and incorporating the knowledge transfer among the models without sacrificing accuracy with minimal memory resources. In CAE-ELM, convolutional neural network (CNN) extracts the features, stacked autoencoder (SAE) reduces the size, and ELM learns and classifies the images. Our proposed algorithm is implemented and experimented on various standard datasets: MNIST, ORL, JAFFE, FERET and Caltech. The results show a positive sign of the correctness of the proposed algorithm.

Keywords


autoencoder; convolutional neural networks; extreme learning machine; heterogeneous data; incremental learning;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v13i5.pp5853-5864

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).