Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques

Salsabila Benghazouani, Said Nouh, Abdelali Zakrani, Ihsane Haloum, Mostafa Jebbar

Abstract


Computing advances in data storage are leading to rapid growth in large-scale datasets. Using all features increases temporal/spatial complexity and negatively influences performance. Feature selection is a fundamental stage in data preprocessing, removing redundant and irrelevant features to minimize the number of features and enhance the performance of classification accuracy. Numerous optimization algorithms were employed to handle feature selection (FS) problems, and they outperform conventional FS techniques. However, there is no metaheuristic FS method that outperforms other optimization algorithms in many datasets. This motivated our study to incorporate the advantages of various optimization techniques to obtain a powerful technique that outperforms other methods in many datasets from different domains. In this article, a novel combined method GASI is developed using swarm intelligence (SI) based feature selection techniques and genetic algorithms (GA) that uses a multi-objective fitness function to seek the optimal subset of features. To assess the performance of the proposed approach, seven datasets have been collected from the UCI repository and exploited to test the newly established feature selection technique. The experimental results demonstrate that the suggested method GASI outperforms many powerful SI-based feature selection techniques studied. GASI obtains a better average fitness value and improves classification performance.

Keywords


Feature selection; Genetic algorithms; Machine learning; Multi-objective optimization; Swarm intelligence;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijece.v14i1.pp944-959

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

International Journal of Electrical and Computer Engineering (IJECE)
p-ISSN 2088-8708, e-ISSN 2722-2578

This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).